Communications

Diastereoselective 1.4-Addition of Stannyl Radical in the Presence of Lewis Acid: A Novel Synthetic Route to Optically Active β -Stannyl Esters

Mayumi Nishida,*,† Atsushi Nishida,*,‡ and Norio Kawahara[‡]

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 063, Japan, and Hokkaido Institute of Pharmaceutical Sciences, Katsuraoka 7-1, Otaru 047-02, Japan

Received December 6, 1995

Organostannyl compounds, which have a C-Sn bond at a stereocenter, are useful reagents for stereoselective syntheses.^{1,2} In particular, the addition of allylstannane to a carbonyl group has been widely investigated^{3,4} and extended to asymmetric allylation using enantioenriched allylstannanes. Several methods have been developed to prepare optically active alkyl- and allylstannanes.⁵ However, none of these approaches are widely applicable.

Recently, we reported a Lewis acid-promoted β -diastereoselective radical cyclization using α,β -unsaturated 8-phenylmenthyl ester as a chiral radical acceptor (Scheme 1).⁶ We have subsequently expanded our investigation in this area to consider the reaction of a stannyl radical to α,β -unsaturated 8-phenylmenthyl esters to give optically active β -stannyl esters. We report here an auxiliarycontrolled asymmetric synthesis of β -tributylstannyl esters, which have proven to be useful building blocks for the synthesis of optically active cyclopropanes.

In our previous studies on β -diastereoselective radical cyclizations, a low reaction temperature was important to achieve high diastereoselectivities. The addition of stannyl radicals to α,β -unsaturated esters generally occurs under thermal conditions (such as at 80 °C) and does not occur at 0 °C or below (vide infra). However, in the reaction of 1, we found that a small amount of 3 (13%) was produced even at -20 °C in the presence of BF₃· OEt₂, along with the cyclized product.^{6a}

To determine the relative reactivities of alkyne 4 and α,β -unsaturated ester **5** in the reaction with a stannyl

radical, a mixture of 4 (0.4 mmol) and 5 (0.4 mmol) was treated with Bu₃SnH (0.4 mmol) in the presence of BF₃. OEt₂ and a radical initiator (Et₃B) for 30 min (eq 1). At 0 °C, the hydrostannylation of 4 proceeded faster (45% yield of 6, which was produced by hydrostannylation followed by destannylation) than the 1,4-addition of the stannyl radical to 5 (5% yield of 7). On the other hand, hydrostannylation dramatically slowed at -40 °C (5% yield of 6), while 5 maintained its reactivity (18% yield of 7). Therefore, the relative reactivity varied with the reaction temperature.

These data suggest that the 1,4-addition of stannyl radical could occur with a reasonable reaction rate in the presence of a Lewis acid even at 0 °C or below. Thus, the reactions of achiral and chiral unsaturated esters were investigated (Scheme 2).⁷ The results in Table 1 clearly show that the presence of a Lewis acid is essential for this reaction to proceed at less than 0 °C (runs 1 and 2).8 The reaction of 8a proceeded smoothly to give β -stannyl ester **9a** at a yield of 64% (run 2, Table 1). While this reaction also proceeded with Me₂AlCl or bis-(2,6-di-tert-butyl-4-methylphenoxy)aluminum chloride (runs 5 and 6, Table 1), trialkylaluminum reagents, such as *i*-Bu₃Al, were ineffective.

[†] Hokkaido University. [‡] Hokkaido Institute of Pharmaceutical Sciences. (1) Pereyre, M.; Quintard. J.-P.; Rahm, A. Tin in Organic Synthesis;

Butterworths: Boston, 1987. (2) Review: (a) Sato, T. Synthesis 1990, 259. (b) Yamamoto, Y; Asao,

⁽a) Marshall, J. A.; Seletsky, B. M.; Luke, G. P. J. Org. Chem.
(3) (a) Marshall, J. A.; Seletsky, B. M.; Luke, G. P. J. Org. Chem.
1994, 59, 3413. (b) Marshall, J. A.; Welmaker, G. S. J. Org. Chem.
1994, 59, 4122. (c) Marshall, J. A.; Jablonowski, J. A.; Luke, G. P. J. Org. Chem. 1994, 59, 7825. (d) Marshall, J. A.; Beaudoin, S. J. Org. Chem. 1994, 59, 6614. (e) Marshall, J. A.; Beaudoin, S. J. Org. Chem. 1994, 59, 7833. (f) Marshall, J. A.; Jablonowski, J. A.; Elliot, L. M. J. Org. Chem. 1995, 60, 2662.

^{(4) (}a) Jephcote, V. J.; Pratt, A. J.; Thomas, E. J. J. Chem. Soc. Perkin Trans. 1 1989, 1529. (b) Dussalut, P. H.; Lee, R. J. J. Am. Chem. Soc. 1994, 116, 4485. (c) Watrelot, S.; Parrain, J.-L.; Quintard, J.-P. J. Org. Chem. 1994, 59, 7959.

^{(5) (}a) Fillippo, J. S., Jr.; Silbermann, J. J. Am. Chem. Soc. **1982**, 104, 2831. (b) Chan, P. C.-M.; Chong, J. M. J. Org. Chem. **1988**, 53, 5584.

^{(6) (}a) Nishida, M.; Ueyama, E.; Hayashi, H.; Ohtake, Y.; Yamaura, Y.; Yanaginuma, E.; Yonemitsu, O.; Nishida, A.; Kawahara, N. J. Am. Chem. Soc. 1994, 116, 6455. (b) Nishida, M.; Hayashi, H.; Yamaura, Y.; Yanaginuma, E.; Yonemitsu, O.; Nishida, A.; Kawahara, N. Tetrahedron Lett. 1995, 36, 269. (c) Nishida, M.; Nobuta, M.; Nakaoka, K.; Nishida, A.; Kawahara, N. Tetrahedron Asymm. 1995, 6, 2657.

⁽⁷⁾ Representative procedure: (Run 3) to a solution of 8b (38 mg, 0.2 mmol) in toluene (2.0 mL) were added BF3·OEt2 (0.8 mmol), Et3B (1 M in hexane, 0.23 mmol), and Bu₃SnH (0.33 mmol) at -25 °C under Ar, and the mixture was stirred for 3.5 h. (Run 11) to a solution of 8f (60 mg, 0.2 mmol) in toluene (1.6 mL) were added Bu₃SnH (0.33 mmol), Et₂AlCl (1 M in hexane, 0.4 mmol), and Et₃B (1 M in hexane, 0.23 mmol) at -25 °C under Ar, and the mixture was stirred for 1.5 h.

⁽⁸⁾ Related Lewis acid-enhanced reactivity in a radical reaction has been reported recently: Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato F. J. Org. Chem. 1995 60, 3576.

Table 1. 1, 4-Addition of Stannyl Radical

run	substrate	Lewis acid	temp	time	yield of	selectivity
		(equiv)	(°C)	(h)	9 (%)	
1	8 a	none	0	1.5	0	
2	8 a	BF3•OEt2 (4)	0	0.5	64	
3	8 b	BF3•OEt2 (4)	-25	3.5	67	
4	8 C	BF3•OEt2 (5)	0	0.7	68	
5	8 C	Me ₂ AICI (2)	-25	1.5	86	
6	8 C		-25	2.0	80	
		(2)				
7	8 d	BF3•OEt2(4)	-25	2.0	78	19:1
8	8 e	BF3•OEt2 (4)	-25	2.0	78	19:1
9	8 f	BF3•OEt2 (4)	-25	1.5	80	6:1
10	8 f	Me ₂ AICI (2)	-25	1.5	80	6:1
11	8 f	Et ₂ AICI (2)	-25	1.5	82	7:1
12	8 f		-25	1.8	70	7:1
		(2)				

Since stannyl ester **3** was obtained as a single diastereomer,^{6a,9} high diastereoselectivity was expected in reactions using 8d-f (runs 7–12, Table 1). All of these reactions proceeded at -25 °C and provided β -stannyl esters in good yields. Higher diastereoselectivity was observed in reactions using α,β -unsaturated esters with a bulky substituent at the β -position, such as **8d** and **8e**. In our intramolecular version of this reaction, bulky aluminum reagents were effective in achieving higher diastereoselectivities. However, in reactions with 8f, a significant enhancement of diastereoselectivity was not observed in the reaction using bis(2,6-di-tert-butyl-4methylphenoxy)aluminum chloride (run 12, Table 1).

The diastereoselectivities of **9d-f** were determined as follows. The β -stannyl esters **9d**-**f** were first transformed into γ -hydroxystannanes (LAH, ether, 70–80%), and then converted to their respective Mosher esters [DCC, (-)-MTPA, 85-100%]. Their diastereoselectivities were then determined by ¹H-NMR (600 MHz).

The β -stannyl ester **9f** (a 7:1 mixture of diastereomers, 75% de) was converted to the optically active cyclopropane **12** (Scheme 3).^{1,10} Since the reaction of **9f** with a large excess of PhMgBr at room temperature did not give Scheme 3

11, the chiral auxiliary of 9f was removed by standard hydrolysis. The methyl ester 10 was then converted to **11**. Cyclopropane formation proceeded efficiently, and the optical rotation of the resulting cyclopropane 12 was $[\alpha]_D$ +102°. The absolute configuration of **12** was determined to be *S* by comparison with the reported $[\alpha]_D$ value.¹¹ According to a previously reported mechanism for cyclopropane formation,^{10c} the absolute configuration of the asymmetric carbon with the stannyl group in 9f was *R*. This result is consistent with the transition state that we propose for Lewis acid-promoted β -diastereoselective cyclization (Scheme 4).⁶

In conclusion, the diastereoselective 1,4-addition of stannyl radical to α,β -unsaturated (–)-8-phenylmenthyl ester in the presence of a Lewis acid is a convenient method for preparing optically active β -stannyl esters, which are building blocks for chiral cyclopropane synthesis.

Supporting Information Available: Experimental procedures for the 1,4-addition of stannyl radical (Table 1), including the determination of diastereoselectivity, conversion of 9f to 12 (Scheme 3), and preparation of chiral substrates 8d,e,f (32 pages).

JO952170D

⁽⁹⁾ Diastereoselectivity was determined by ¹H-NMR. The stereochemistry of 3 could not be determined and was tentatively assigned as shown on the basis of the transition-state model.

^{(10) (}a) Peterson, D. J.; Robbins, M. D. Tetrahedron Lett. 1972, 2135. (b) Ueno, Y.; Ohta, M.; Okawara, M. Tetrahedron Lett. 1982, 23, 2577. (c) Fleming, I.; Urch, C. J. Tetrahedron Lett. 1983, 24, 4591. (d) Kadow, J. F.; Johnson C. R. Tetrahedron Lett. 1984, 25, 5255. (e) Beddoes, R. L.; Lewis, M. L.; Quayle, P.; Johal, S. Tetrahedron Lett. 1995, 36, 471. (11) The optical rotation of (S)-methyl-2,2-diphenylcyclopropane was reported to be $[a]^{22}_{D} = +127 \pm 2^{\circ}$ (CHCl₃, *c* 0.34). (a) Walborsky, H. M.; Pitt, C. G. *J. Am. Chem. Soc.* **1962**, *84*, 4831. (b) Impastato, F. J.;

Walborsky, H. M. J. Am. Chem. Soc. 1962, 84, 4838.